Stroke-associated pattern of gene expression previously identified by machine-learning is diagnostically robust in an independent patient population
نویسندگان
چکیده
Our group recently employed genome-wide transcriptional profiling in tandem with machine-learning based analysis to identify a ten-gene pattern of differential expression in peripheral blood which may have utility for detection of stroke. The objective of this study was to assess the diagnostic capacity and temporal stability of this stroke-associated transcriptional signature in an independent patient population. Publicly available whole blood microarray data generated from 23 ischemic stroke patients at 3, 5, and 24 h post-symptom onset, as well from 23 cardiovascular disease controls, were obtained via the National Center for Biotechnology Information Gene Expression Omnibus. Expression levels of the ten candidate genes (ANTXR2, STK3, PDK4, CD163, MAL, GRAP, ID3, CTSZ, KIF1B, and PLXDC2) were extracted, compared between groups, and evaluated for their discriminatory ability at each time point. We observed a largely identical pattern of differential expression between stroke patients and controls across the ten candidate genes as reported in our prior work. Furthermore, the coordinate expression levels of the ten candidate genes were able to discriminate between stroke patients and controls with levels of sensitivity and specificity upwards of 90% across all three time points. These findings confirm the diagnostic robustness of the previously identified pattern of differential expression in an independent patient population, and further suggest that it is temporally stable over the first 24 h of stroke pathology.
منابع مشابه
Simulation of Scour Pattern Around Cross-Vane Structures Using Outlier Robust Extreme Learning Machine
In this research, the scour hole depth at the downstream of cross-vane structures with different shapes (i.e., J, I, U, and W) was simulated utilizing a modern artificial intelligence method entitled "Outlier Robust Extreme Learning Machine (ORELM)". The observational data were divided into two groups: training (70%) and test (30%). Then, using the input parameters including the ratio of the st...
متن کاملMammalian Eye Gene Expression Using Support Vector Regression to Evaluate a Strategy for Detecting Human Eye Disease
Background and purpose: Machine learning is a class of modern and strong tools that can solve many important problems that nowadays humans may be faced with. Support vector regression (SVR) is a way to build a regression model which is an incredible member of the machine learning family. SVR has been proven to be an effective tool in real-value function estimation. As a supervised-learning appr...
متن کاملPrediction of blood cancer using leukemia gene expression data and sparsity-based gene selection methods
Background: DNA microarray is a useful technology that simultaneously assesses the expression of thousands of genes. It can be utilized for the detection of cancer types and cancer biomarkers. This study aimed to predict blood cancer using leukemia gene expression data and a robust ℓ2,p-norm sparsity-based gene selection method. Materials and Methods: In this descriptive study, the microarray ...
متن کاملExploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach
Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...
متن کاملGene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method
Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...
متن کامل